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Traditional methods for estimating benefits rely on statistical measures of process
variation and acceptable deviation from specifications.  In this paper is presented a
deterministic formula for calculating product loss that results from the variation itself.  The
formula takes into account the effects of process conditions and post-processing blending.
By assuming infinite blending capacity, this formula represents a lower bound on the product
losses that actually can occur.  The formula derived for irreversible loss is applied to a couple
of example problems.  The first example is a simple two-component flash.  Results from this
example show that there is an irreversible loss of process variation even with linear blending
properties.    The second example shows the losses associated with variation in the cloud
point of a diesel product in a multi-cut fractionator.  This example illustrates the additional
losses that result from nonlinear blending characteristics.

1  INTRODUCTION

Traditional methods of benefit analysis for
process control rely on statistical measures of
variation and acceptable frequency of deviation.
This paper presents a conservative method for
calculating the loss of product that is due to the
variation itself.

2  DERIVATION

Two basic principles are used to derive a
formula for irreversible loss.  The first principle is
that product quality and yield are related.  The
second principle is that excursions away from
specifications can be corrected by moving the
process temporarily to the other side of the
excursion.

It is almost universally true that higher quality
comes at the cost of lower yield.  An active
product specification is really a limitation on
production. For a separation process it is possible
to make more valuable product by adding
impurities, while making a product too clean puts
valuable components in less-valuable streams,
resulting in quality “giveaway”.  The general
formulation for irreversible loss relies on a yield
function to express this relationship between yield
and purity.

(1)  ( ) [ ]qualityzzfYield == ,

During the time of product processing it is not
necessary to be on-spec at every instant for the
final product to be on-spec.  Brief periods of off-
spec production can be compensated for by
running with quality giveaway for a period of time
and vice versa.  This blending of products over
time is illustrated in Figure 1.
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Not all qualities blend linearly.  The common
method to account for nonlinear blending is to
transform the quality to a blending index which
does blend linearly (with respect to mass or
volume).  In this paper the blending index is
represented as a function g(z).
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The final blended quality is just a yield
average of the blending indices.  For the
production profile in Figure 1, a final product
meeting specification is produced by running the
process in quality giveaway mode for a period of
time tc to compensate for running the product off-
spec for a period of time tp.
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FIGURE 1: Quality Blending Over Time



  The final blended quality is the same with a
varying or constant quality profile.  However, when
a product is made off-spec, the yield relationship
shows that more product is being made.  To
compensate, a higher quality product must be
produced.  Since yield is smaller for higher quality,
it takes a longer time to produce an equivalent
amount of higher quality product, resulting in a net
yield loss.  This is expressed as a rate loss over
time period tp.
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or equivalently:
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where x = tp/tc.

An infinite number of possibilities exist for
blending away the quality excursion that occurred
over time tp.  A product of much higher quality can
be produced for a shorter time or a slightly better
quality product can be produced for a longer time.
The minimum product loss is realized by using
infinite time to correct the quality excursion with
product infinitesimally better than the quality spec.
This portion of the rate loss is irreversible and can
be expressed as,
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where IRL is defined as the irreversible rate loss
and f(zc) is subject to the equality defined in
equation (3) (rewritten in terms of x)
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This is really the substance of the equation for
irreversible rate loss.  What follows are just the
mathematical details.

The first two terms of equation (6) are
constants, while the numerator and denominator
of the quotient both approach 0 as x approaches
0.  Since both numerator and  denominator are
differentiable, L’Hospital’s rule can be used to find
the limit of the quotient.
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This limit can be found by differentiating
equation (7) implicitly.  First rearranging, we see
that the whole equation is just a function of two
variables, zc and x (zp and zs are constants).
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Differentiating implicitly with respect to x,
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 and then solving for dzc/dx yields the following:
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This result can then be used to obtain a
formula for the derivative expressed in equation
(8).
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As x  approaches zero, zc approaches zs and
equation (12) simplifies to the following:
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Substituting this result into equation (6) gives
the final form for irreversible loss.
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It deserves final mention what this formula
actually means.  It is the product loss resulting
from dynamically making a product away from
specification that cannot be recovered by
adjusting the process to compensate.  Since this
formula assumes perfect compensation with
infinite blending capacity, it represents a lower
bound on the actual product losses that can occur.

3  TWO COMPONENT FLASH

The first example is chosen for its simplicity
and reproducibility.  A stream of normal butane
contains 6 wt% of a propane impurity.  It is heated
by heat exchange with another stream and then
flashed at a constant 240 psia in order to purify
the liquid flash stream to 5 wt%.  Variations in
reboiler medium lead to imprecise control of heat
input.  A diagram for this system is shown in
Figure 2.
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Reboiler

6 wt% C3

5 wt% C3

Pressure
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Reboiler
Medium
Flow
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= 1000 lb/hr

FIGURE 2: C3/C4 Flash

As more heat is added, the concentration of
C3 impurity in the liquid product decreases, but so
does the flow of liquid product.  A series of flash
calculations shows how yield and purity are
related to varying amounts of heat input (Figure
3).
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FIGURE 3: Flash Yield vs. C3 Impurity

A second order polynomial curve fit is used to
get a yield equation for liquid product as a function
of C3 concentration.

(15) ( ) 23853.725.10266.248 zzzf −+−=

Since a weight composition blends linearly with
weight, a linear blending function is used,

(16) ( ) zzg =

and this results in the following graph for
irreversible rate loss in the system.
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FIGURE 4: IRL for Flash Problem

There are some general properties of this
function that can be pointed out.  First, loss is
always positive.  No matter which side of the
specification the process deviates on, the net
result is a loss of valuable product.

Also. from Figure 3, the yield of liquid at
product specification is 78%.  When the product is
at its dew point or superheated, all of the liquid
product is now going overhead into the vapor
stream.  The irreversible loss at the dew point is
also 78%, showing that this loss is completely
irreversible.

One way to visualize the total irreversible loss
from a specific disturbance is to accumulate the
total pounds of loss over time.  For a continuous
quality measurement this would result in the
following equation.

(17) ( )dtzIRLRCL
Tt

t
∫
=

=

•=
0

where CL is the cumulative product loss and R is
the feed rate (see Figure 2).  For a sampled data
system the cumulative loss is represented by the
following equation:

  (18) ( ) tzIRLRCL
T∑ ∆•=
0

The cumulative irreversible loss of  product
from some simulated process data is shown in
Figure 5.
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FIGURE 5:  Cumulative IRL for C3/C4.

For a flow rate of 1000 lb/hr of feed, this
graph shows an irreversible loss of 72 pounds of
liquid product over a one-hour period.

4 MULTI-CUT FRACTIONATOR

A second example shows the effect of
nonlinear blending on irreversible loss.  Multi-cut
fractionators are used to separate petroleum
fractions with a wide range of boiling points.
Increased production of valuable middle distillate
streams (kerosine, diesel) are limited by
specifications on “cold properties”.  These
specifications on cloud, pour and freeze points are
most directly affected by the amount and
character of higher boiling point material in the
product stream.  The more product that is pulled
from lower in the column, the higher the cold point.

Specifications on fractionator streams vary
widely depending on the economics and the local
market being served.  Yield models also depend
on the feed makeup.  For example, feed coming
from a hydrocracker will have a much higher
middle distillate yield than pure crude oil.  For this
example, it is assumed that a diesel cut with a 10
Deg F cloud point specification yields 20% of the
feed.  It is also assumed that increasing diesel
draw will increase yield at a rate of 0.4% of feed
for every degree of cloudpoint.  So the yield model
used for this problem is the following:

(19) ( ) zzf 4.016 +=

where z is cloud point and f is expressed in
percent of feed.

Hu and Burns developed a blending index
system that predicts cold properties of blends
using the following formula:
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For cloud point, they concluded the best
industry-wide results were obtained using a value
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equations for g(z) and g’(z):
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This is all that is needed to generate the IRL
function.  This function for zs = 10 is plotted in
Figure 6.
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FIGURE 6:  IRL with variation in Cloud Point.  zs =
10 Deg F.

To compare the effect of nonlinear blending
characteristics, the IRL function for linear blending
(g(z) = z) is also plotted in this graph.  A couple of
differences are obvious.  First, nonlinear blending
increases irreversible loss on the high and low
sides.  Also, the function with blending is skewed,
with the irreversible loss greater for going off-spec
on the high side.

5 CONCLUSIONS

In this paper, a formula for irreversible loss is
derived and applied to a couple of example
problems.  Its derivation assumes perfect
compensation for any disturbances using  infinite
blending capacity and is therefore a lower bound
on actual product losses.

This formula possesses a number of
positive characteristics.  Its deterministic nature
makes it unnecessary to have a statistically
significant amount of data for analysis.  It is in fact
quite useful for analyzing data that might be
discarded by traditional techniques.  It also gives
some quantifiable justification for running a plant
smoother, even when the final product is blended
to be on-spec.

6 DEFINITION OF TERMS

CL Cumulative product loss
f Yield function
g Blending index
IRL Irreversible rate loss
R Feed flow rate
t time
tp time of production
tc time of compensation
x Ratio of time, compensation/production
z Constraining quality measurement
zs Quality specification
zp Production quality
zc Compensation quality
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